LAKE

An extended one-dimensional model
of themrodynamic, hydrodynamic,
and biogeochemical processes

About

LAKE is an extended one-dimensional model of thermodynamic, hydrodynamic and biogeochemical processes in the water basin and the bottom sediments (Stepanenko and Lykosov 2005, Stepanenko et al. 2011). The model simulates vertical heat transfer taking into account the penetration of short-wave radiation in water layers (Heiskanen et al., 2015), ice, snow and bottom sediments. The model allows for the evolution of ice layer at the bottom after complete lake freezing in winter. The equations of the model are formulated in terms of quantities averaged over the horizontal section a water body, which leads to an explicit account of the exchange of momentum, heat, dissolved species and suspended matter between water and the inclined bottom. In the water column, k - ε parametrization of turbulence is applied, along with other options like Henderson-Sellers diffusivity and convective adaptation of predicted vertical distributions. The equations of motion take into account the barotropic (Stepanenko et al., 2016) and baroclinic pressure gradient (Степаненко, 2018; Stepanenko et al., 2020). In ice and snow, a coupled transport of heat and liquid water is reproduced (Volodina et al. 2000; Stepanenko et al., 2019). In bottom sediments, water phase changes are simulated. The water salinity effects include contributions to density, freezing point, the ice growth rate (Stepanenko et al., 2019). The water budget is explicitly simulated to reproduce lake level variations, as well as associated vertical motions in the water column (Степаненко и др., 2020). The model also describes vertical diffusion of dissolved gases (CO2​, CH4​, O2​​), as well as their bubble transfer, methane oxidation, photosynthesis and processes of oxygen consumption in water column and sediments. The other biogeochemical species include particulate organic matter (both living and dead), chorophyll-a, dissolved organic carbon, dissolved inorganic phosphorus. Parameterization of methane production in sediments is included (Stepanenko et al. 2011), and for the case of thermokarst lakes, an original formulation for the methane production near the lower boundary of "talik" is implemented. Model has been tested in respect to thermal and ice regime at a number lakes in contrasting climate conditions, specifically, within the LakeMIP project (Lake Model Intercomparison Project, Stepanenko et al., 2010; Stepanenko et al., 2013; Stepanenko et al., 2014; Thiery et al., 2014). The modeled carbon dioxide and methane emissions has been reported for a number of natural and artificial reservoirs (Iakunin et al., 2020; Guseva et al., 2020; Stepanenko et al., 2011; Stepanenko et al., 2016; Степаненко и др., 2020).

Team

Victor Stepanenko

Victor Stepanenko

Moscow State University, Moscow, Russia

Lab Head

Evgeny Mortikov

Evgeny Mortikov

Moscow State Uinversity, Moscow, Russia

Senior Researcher

Daria Gladskikh

Daria Gladskikh

Institute of Applied Physics RAS, Nizhniy Novgorod, Russia

Junior Researcher

Victor Lomov

Victor Lomov

Moscow State University, Moscow, Russia

Graduate Student

Collaborations

Organizations involved in the development and application of the model

Moscow State Univercity, Research Computing Center
Leninskie Gory, 1, building 4, Moscow, 119234, Russia
[visit site]
Institute of Applied Physics, Russian Academy of Sciences
Russia, 603950, Nizhniy Novgorod, Ulyanova str., 46
[visit site]
Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch of Russian Academy of Sciences
Russia, 634055, Tomsk, Akademicheskiy ave., 10 / 3
[visit site]

Applications

Files & documentation

The current version of the model is 3.2

The complete model archive with sample input data:

  • LAKE2.0.zip, application/x-zip-compressed, 743.3 kb, downloaded 148 times
    LAKE2.0.zip
    initial version
  • LAKE2.1.zip, application/x-zip-compressed, 1.28 Mb, downloaded 120 times
    LAKE2.1.zip
    (salinity dynamics in ice cover is added)
  • LAKE2.2.zip, application/x-zip-compressed, 1.02 Mb, downloaded 125 times
    LAKE2.2.zip
    (input/output of control point added, minor bugs fixed)
  • LAKE2.3.zip, application/x-zip-compressed, 1.33 Mb, downloaded 138 times
    LAKE2.3.zip
    (commit 7d016e79 in gitlab repository, which is updated by testing at GNU Fortran 9.3.0 compiler; the model is adapted to simulate artificial reservoirs with high throughflow and water level variations; a model configuration for simulating the vertical structure of river flow is added)
  • LAKE2.4.zip, application/x-zip-compressed, 1.05 Mb, downloaded 133 times
    LAKE2.4.zip
    (commit f29fb387 in repository; bugs related to \(k-\epsilon\) model fixed, new b.c. options for \(k-\epsilon\), Cuette-Poiseuille flow setup and turbulence closure added, methane production parameters are set specific for each sediment column, new output options)
  • LAKE2.5.zip, application/x-zip-compressed, 1.05 Mb, downloaded 128 times
    LAKE2.5.zip
    (commit 82350cae in repository; the code is adapted for ifort compiler, bugs fixed)
  • LAKE2.6.zip, application/x-zip-compressed, 1.03 Mb, downloaded 126 times
    LAKE2.6.zip
    (commit 08aa0758 in repository; new driving parameters, related to background diffusivity in thermocline, methane production and oxidation in water column, are included in setup file)
  • LAKE-LAKE3.0.zip, application/x-zip-compressed, 1.33 Mb, downloaded 251 times
    LAKE-LAKE3.0.zip
    (commit 6548bc92 in repository; a number of bugs fixed, esp. related to salinity; filling missing input radiation fluxes by values computed by empirical formulae; model code improved)
  • LAKE3.2.zip, application/x-zip-compressed, 1.22 Mb, downloaded 18 times
    LAKE3.2.zip
    (commit 69ba4cc1 in repository; multiple fixes and improvements in biogeochemical scheme)
  • users_guide.pdf, application/pdf, 161.5 kb, downloaded 37 times
    users_guide.pdf
    Short Users`s guide for model on Linux
  • tech_doc.pdf, application/pdf, 371.03 kb, downloaded 35 times
    tech_doc.pdf
    Technical description
  • When publishing results using LAKE2.x model please refer to:

    Stepanenko, V., Mammarella, I., Ojala, A., Miettinen, H., Lykosov, V., & Vesala (2016). LAKE 2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes. Geoscientific Model Development, 9(5), 1977–2006.
    http://doi.org/10.5194/gmd-9-1977-2016

References

  • Iakunin, Maksim, Victor Stepanenko, Rui Salgado, Miguel Potes, Alexandra Penha, Maria Helena Novais, and Gonçalo Rodrigues. Numerical study of the seasonal thermal and gas regimes of the largest artificial reservoir in western europe using the LAKE 2.0 model. Geoscientific Model Development, 13(8):3475–3488, 2020.
    linkhttp://dx.doi.org/10.5194/gmd-13-3475-2020
  • Heiskanen, J. J., Mammarella, I., Ojala, A., Stepanenko, V., Erkkilä, K.-M., Miettinen, H., … Nordbo, A. (2015). Effects of water clarity on lake stratification and lake-atmosphere heat exchange. Journal of Geophysical Research, 120(15).
    linkhttp://doi.org/10.1002/2014JD022938
  • Stepanenko, V. M., Machul’skaya, E. E., Glagolev, M. V., & Lykossov, V. N. (2011). Numerical modeling of methane emissions from lakes in the permafrost zone. Izvestiya, Atmospheric and Oceanic Physics, 47(2), 252–264.
    linkhttp://doi.org/10.1134/S0001433811020113
  • Stepanenko, V. M., Martynov, A., Jöhnk, K. D., Subin, Z. M., Perroud, M., Fang, X., … Goyette, S. (2013). A one-dimensional model intercomparison study of thermal regime of a shallow, turbid midlatitude lake. Geoscientific Model Development, 6(4), 1337–1352.
    linkhttp://doi.org/10.5194/gmd-6-1337-2013
  • Stepanenko, V., Jöhnk, K. D., Machulskaya, E., Perroud, M., Subin, Z., Nordbo, A., … Mironov, D. (2014). Simulation of surface energy fluxes and stratification of a small boreal lake by a set of one-dimensional models. Tellus, Series A: Dynamic Meteorology and Oceanography, 66(1).
    linkhttp://doi.org/10.3402/tellusa.v66.21389
  • Stepanenko, V., Mammarella, I., Ojala, A., Miettinen, H., Lykosov, V., & Vesala, T. (2016). LAKE 2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes. Geoscientific Model Development, 9(5), 1977–2006.
    linkhttp://doi.org/10.5194/gmd-9-1977-2016
  • Stepanenko, V. M., Repina, I. A., Ganbat, G., and Davaa, G. Numerical simulation of ice cover of saline lakes (2019). Izvestiya - Atmospheric and Oceanic Physics, 55(1):129–138, 2019.
    linkhttp://dx.doi.org/10.1134/S0001433819010092
  • V. M. Stepanenko, G. Valerio, and M. Pilotti (2020). Horizontal pressure gradient parameterization for one-dimensional lake models. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 12(2):e2019MS001906, 2020
    linkhttp://dx.doi.org/10.1029/2019ms001906
  • S. Guseva, T. Bleninger, K. Jöhnk, B. A. Polli, Z. Tan, W. Thiery, Q. Zhuang, J. A. Rusak, H. Yao, A. Lorke, and V. Stepanenko (2020). Multimodel simulation of vertical gas transfer in a temperate lake. Hydrology and Earth System Sciences, 24:697–715, 2020
    linkhttp://dx.doi.org/10.5194/hess-24-697-2020
  • Thiery, W., Stepanenko, V., Fang, X., Jöhnk, K., Li, Z., Martynov, A., … van Lipzig, N. (2014). LakeMIP Kivu: evaluating the representation of a large, deep tropical lake by a set of one-dimensional lake models. Tellus, Series A: Dynamic Meteorology and Oceanography, 66.
    linkhttp://doi.org/doi:10.3402/tellusa.v66.21390
  • Volodina, E., Bengtsson, L., & Lykosov, V. N. (2000). Parameterization of heat and moisture transfer in a snow cover for modelling of seasonal variations of land hydrological cycle. Russian Meteorology and Hydrology, (5), 5–14.
    linkhttps://mathmod.org/inc/files/VolodinLykosov1998-2.pdf
  • Степаненко В.М. (2018) Параметризация сейш для одномерной модели водоёма. Труды Московского физико-технического института. том 10, № 1, с. 97-111.
    linkhttps://mathmod.org/inc/files/Stepanenko2018.pdf
  • В. М. Степаненко, М. Г. Гречушникова, И. А. Репина. Численное моделирование эмиссии метана из водохранилища. Фундаментальная и прикладная климатология, 2:76–99, 2020.
    linkhttp://dx.doi.org/10.21513/2410-8758-2020-2-76-99
  • Gladskikh, D. S., V. M. Stepanenko, and E. V. Mortikov (2021). The effect of the horizontal dimensions of inland water bodies on the thickness of the upper mixed layer. Water Resources, 48(2):226–234.
    linkhttp://dx.doi.org/10.1134/S0097807821020068
  • Golub, Malgorzata, Wim Thiery, Rafael Marcé, Don Pierson, ..., and Galina Zdorovennova (2022). A framework for ensemble modelling of climate change impacts on lakes worldwide: the isimip lake sector. Geoscientific Model Development, 15:4597–4623.
    linkhttp://dx.doi.org/10.5194/gmd-15-4597-2022
  • Guseva, S., M. Aurela, A. Cortés, R. Kivi, E. Lotsari, S. MacIntyre, I. Mammarella, A. Ojala, V. Stepanenko, P. Uotila, T. Vesala, M. B. Wallin, and A. Lorke (2021). Variable physical drivers of near-surface turbulence in a regulated river. Water Resources Research, 57(11):e2020WR027939.
    linkhttp://dx.doi.org/10.1029/2020wr027939
  • Gash, J. (main edit.) (2010). Greenhouse gas emissions related to freshwater reservoirs. World Bank Report. UNESCO/IHA GHG Proj. 166 p.
    linkhttps://mathmod.org/inc/files/GHG_emissions_related_to_freshwater_reservoirs.pdf

Contacts

Any questions regarding LAKE model please address to Victor Stepanenko.

Leninskie Gory, 1, building 4, Moscow, 119234, Russia

stepanen(at)srcc.msu.ru